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ABSTRACT 
 

In this article the genetic algorithm is employed to optimize scissor-link foldable structures. The 
advantage of using GA lies in the fact that the discrete spaces can be optimized without any 
complexity. Here displacement method is used for analysis with uniplet elements.  
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1.  INTRODUCTION 
 

Optimization of an engineering design is an improvement of a proposed design that results in the 
best properties for minimum cost. Optimization can be categorized as sizing optimization, shape 
optimization, topology optimization and layout optimization. Classical optimization is done 
manually with algebra, calculus, and calculus of variations. Many design problems are too 
complex to be handled with purely algebraic method. Evolutionary methods are other 
optimization methods that employ neural networks, simulated annealing or genetic algorithm. 

The need for mobile, re-usable structures that are characterized by fast and easy erection 
existed for a long time. Such structures found application in the temporary construction industry. 
They are also used for recreational purposes, and providing solutions for quick sheltering after 
natural disasters. In recent years a new exciting area for applications is offered by the aerospace 
industry. The first such structure has been designed and constructed by Pinero [1]. Substantial 
contribution to the general understanding of geometric and kinematic behavior of scissor-link 
structures is due to Escrig [2], and Escrig and Valcarcel [3]. Further studies have been made by 
Ziegler [4], Derus [5], Nodskov [6], Gantes et al [7], Rosenfeld et al [8], Shan [9], and Kaveh 
and Davaran [10], covering various aspects of foldable structures. 

In this article sizing optimization of scissor-link foldable structures employing Genetic 
algorithm is has been studied. In the process of optimal design, analysis should be performed 
several times. Here, by using the stiffness matrix of uniplet, analysis is simplified and the 
efficiency is increased.  

 

                                                      
∗ E-mail address of the corresponding author: alikaveh@iust.ac.ir 



A. Kaveh and S. Shojaee 116 

2. METHOD OF ANALYSIS 
 

Efficient methods of analysis for foldable structures are developed by Shan [9], and Kaveh and 
Davaran [10]. Let the member of Figure 1 represents a typical uniplet from a scissor-link 
structure. The force-displacement relationship for a uniplet can be written as: 

 
 uuu dkp ⋅=  (1) 

 
In this equation up  and ud  are the force and displacement vectors of uniplet as 
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(a) A uniplet and its DOFs (b) A 3-node beam and its DOFs 

Figure 1. A uniplet and a 3-node beam. 

  
Comparison between the uniplet and the 3-node beam shows that a uniplet may be considered 

as a 3-node beam without any moment applied at the joints and it has no torsional deformation. 
Thus the relation may symbolically be written as: 
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where uu22211211 ,,,,, dpkkkk  and θ  are submatrices and subvectors. Here up  and ud  are 
identical to the member force and displacement vectors for the uniplet. Expanding eqn (3) results 
in 

 
 022u21 =+ θkdk , (4)  
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 θkdkp 12u11u += .  
(5)  

 
Combining eqn (4) and eqn (5) leads to 

 
 u21

-1
2212u11u dkkkdkp −= . (6)  

 
Comparison of eqns (1) and (6) leads to 

 
 21

-1
221211u kkkkk −= . (7)  

 
This gives rise to the stiffness matrix for the uniplet [9,10]. 

 
 

3. STRUCTURAL OPTIMIZATION USING GENETIC ALGORITHMS 
 

Goldberg is one of the pioneers in developing the genetic algorithm [11]. In structural 
engineering, Goldberg and Samtani [12], Rajeev and Krishnamoorthy [13], Jenkins [14], Lin and 
Hajela [15], Adeli and Chung [16], Saka and Kameshki [17], Kaveh and Kalatjari [18-20] show 
that genetic algorithm is a powerful tool for the optimization of structures. 

Optimization by GA consists of three steps: 
In the first step random creation of a primary design population is performed. Each design is 

called an individual and the number of individuals is known as the pop-size. Each individual 
consists of a string of characters. Each character is usually a random binary number, and the 
number of characters or bits shows the length of each individual. Each string consists of some 
substrings and each substring represents a design variable. The number of substring is equal to 
the number of design variables involved in an optimization. The individual and character in GA 
terminology are the same as the chromosome and gene in natural genetics, respectively. 

In the second step, after producing a primary population, by decoding the strings, real values 
of design variables are evaluated. Then the magnitude of the objective function, member 
stresses, joint displacement and the magnitudes of constraint violations corresponding to 
structural response are obtained. In the third step, a penalty function is defined representing the 
violation of constraints, that combined with the objective function, leads to the modified 
objective function.  

In this manner a constrained optimization is changed to an unconstrained optimization. 
Defining a fitness function, for the modified objective function corresponding to each individual, 
a fitness value is obtained. Using the selection process inspired by the natural evolution of living 
organisms, individuals with high fitness are selected for reproduction. The latter is carried out 
using the roulette wheel rule. Crossover and mutation is then performed and a new population is 
created. The crossover operator performs mating between two arbitrary individuals to produce 
offspring. The number of such operations depends on the crossover rate. The mutation operator 
randomly changes some 0 characters to 1 and vice versa according to a predicted mutation rate. 
Both operators are used to produce diversity in the search space to increase the chance of 
obtaining a global optimum.    
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3.1  GA based discrete-sizing scissor-link foldable structure optimization 
Discrete optimal design of scissor-link foldable structures using GA can be formulated as 

 

 Find ns,,1s;SX;]X,,X,X[X s
T

ns21 ⋅⋅⋅=∈⋅⋅⋅=  (8)  
 

 to minimize penaltyf)x(f)x( +=φ  (9)  
 

Subjected to the following constraints: 
For combined bending and compression: 
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For combined bending and tension:  
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Where X is the vector containing the design variables, Xs is the cross-sectional area for the sth 
group belonging to the variable profile list S, ns is the number of design variables or number of 
member grouping, f(x) is the objective function which is usually taken as the weight or volume 
of the structure, fpenalty is the penalty function which results from the violations of the constraints 
corresponding to the response of the structure, φ (x) is the modified objective function, fa is 
maximal compressive stress due to axial loading, Fa is allowable stress for axial load alone, fb is 
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maximal bending stress at furthest fiber of the cross section, bF is allowable stress for bending 
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coefficient that is taken as unit, l is member length, r is radius of gyration, cm is a coefficient that 
is taken as unit, ∆j is the displacement at that degree of freedom, ∆a is the displacement permitted 
by the code of practice. The objective function in the form of the weight of the structure is as 
follows:  
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=
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ne
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3.2 Penalty function 
Different a penalty function are used in the literature. One of the earliest is due to Rajeev and 
Krishnamoorthy [13] as follows: 
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=

ρ ==
nc

1q
qpenalty )]x(g,0max[c;ck)x(ff  (17)  

 
In this relation, nc = ne + ndof + mc represents the number of evaluated constraints for each 
individual design. The constant ρk is taken 3.6 and 10 for two different types of penalty function 
used in this study. 

 
3.3  Fitness function 
The fitness function is also defined in different forms. Rajeev and Krishnamoorthy [13] have 
suggested the following function that is used in this paper: 

 
 [ ] )x()x()x(F minmaxi φ−φ+φ=  (18)  

 
In this equation, iF  and )x(φ  are the fitness and the value of modified objective of the ith 
individual, max)x(φ and min)x(φ are the maximum and minimum values of the modified 
objective function in the population, respectively.  

 
3.4 Decoding an individual in discrete-sizing optimization  
As mentioned before, each individual consists of substrings represented by encoded design 
variables. For discrete-size optimization of scissor-link foldable structures, design variables are 
the cross-sections of grouped members and are selected from an available profile list, i.e. chosen 
from the set S={s1, s2, ..., sns}. If the length of the ith substrings, il , represent the number of bits 
or characters, and at the stage of encoding, random binary numbers are associated with them, in 
the process of decoding, il2  values can be addressed of which the smallest is the integer 0 and 
the largest is the integer 12 il − . One can use the following general relations in order to 
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correspond the integer random value iIR  related to the ith substring to the section number ISi in 
the profile list S. 
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In the above relation nd represents the number of substrings which is the same as the number of 
design variables or the number sections in the list S. The random number ISi is the index which 
recognizes the section area Ai=ISi for the ith substring in S. If  INDi is taken as unity, the ns is 
preferred to be such that ns2 il =  yields an integer for il .  

 
3.5 Termination criterion 
For discrete optimization problems, the procedure can be terminated when one of the following 
heuristic criteria is satisfied [21]: 

 

I. When the best value of the objective function remains unchanged in the last 
ns

s

N
nN4

 

generations. 
II. When  the mean value of the objective function from all parent vectors in the last 

ns

s

N
nN4

generations has not improved by less than a given value, say 0.0001 

III. When the relative difference between the best objective function value and the mean 
of the values of all the objective functions of the parent vectors in the current 
generation is less than a specified value, say 0.0001 

IV. When the ratio  0SN /Ns has reached a given value between 0.5 and 0.8 where 0SN is 
the number of parent vectors in current generation with the best objective function 
value, nsN  is the number of offspring, sN is the number of population. 

 
In this paper, the criterion III is used for termination of the GA operations. 
 
 

4.  NUMERICAL EXAMPLES 
 

For justification of the developed algorithm first a classical example of space trusses is studied. 
Then two examples of foldable structures optimized using the present algorithm. 

 
Example 1 (a 25-bar space truss): A 25-bar truss shown in Figure 3  was considered to be 
optimized. In table I, the members are grouped in eight sets. Table 2 contains set of discrete 
cross-sections with 32 elements. Table III contains all the design data. In this example, the effect 
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of buckling in is not included.  

 

Figure 3. A 25-bar space truss 

 

Table 1: Details for grouping of the 25-bar space truss 

Group 
numbers 

Design 
variables 

Nodal numbers  
of the members 

Member 
numbering 

1 1X  1-2 1 

2 2X  1-4,2-3,1-5,2-6 2,3,4,5 

3 3X  2-5,2-4,1-3,1-6 6,7,8,9 

4 4X  3-6,4-5 10,11 

5 5X  3-4,5-6 12,13 

6 6X  3-10,6-7,4-9,5-8 14,15,16,17 

7 7X  3-8,4-7,6-9,5-10 18,19,20,21 

8 8X  3-7,4-8,5-9,6-10 22,23,24,25 
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Table 2: The discrete cross-section set 

{ }

{ } )in(65.3,5.3,4.3,2.3,0.3,8.2),26,...,2,1I(I1.0S

)cm(5.23,538.22,935.21,645.20,355.19,064.18),26,...,2,1I(I645.0S

2

2

=×=
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Table 3: Design data 

Constraint data 

Displacement constraints: 

In the direction of X and Y axis 0.889cm∆ j ≤ (0.35 in) 

Stress constraints: 

,251,2,i(40Ksi)Mpa275.6σ i ⋅⋅⋅=≤  

Nodal 
number 

)(kNPx  )(kNPy  )(kNPz  

1 4.545 -44.537 -44.537 

2 0 -44.537 -44.537 

3 2.227 0 0 

Loading data 

6 2.672 0 0 

Material properties 
Modulus of elasticity )ksi10(Mpa10895.6E 44×=  

Weight density of the material )
in

lb1.0(
cm

N0272.0 33=ρ  

 
Table 4 contains the optimal design of the 25-bar truss with this algorithm. Figure 4  

shows the history of optimization for generations. In this example, the number of generations  
is taken as 50, the population size is chosen as 100, the mutation rate is 0.15, and the  
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constant pk for penalty function is taken 3. 6.  
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Table 4: Comparison of the results for the 25-bar truss 

Design variables cm2 
Method Weight 

N (lb) 
X1 X2 X3 X4 X5 X6 X7 X8 

Rajeev 

et al. [13] 

2431.79 

(546.01) 
0.645 11.613 14.839 1.29 0.645 5.161 11.613 19.355 

Zhu 

[19] 

2457.44 

(562.9) 
0.645 12.258 16.774 0.645 0.645 5.161 13.548 16.774 

Erbatur 

et al [20] 

2199.26 

(493.8) 
0.645 7.742 20.645 0.645 7.097 5.806 2.581 21.935 

Kaveh 

Kalatjari 

[17] 

2138.82 

(480.23) 
0.645 0.645 22.581 0.645 12.903 6.452 0.645 25.806 

Present 

work 

2210.87 

(506.44) 
0.645 3.225 19.355 0.645 10.965 7.74 1.935 19.355 
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Figure 4. The optimization history of 25-bar truss  

Generation
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Example 2 (a 32-uniplet foldable barrel): The minimal weight design of the 32-uniplet foldable 
barrel vault type of structure, as shown in Figure 5, is performed. In figure 6,7 the geometrical 
properties are considered. Table 5 contains the numbering of nodes and member ordering. In 
table 6 the set of cross-sections are grouped in 16 elements. Table 7 contains all the design data.  

Figure 5. A 32-uniplet foldable barrel Figure 6. Numbering of nodes 

 

 

Figure 7. Elevation of the nodes 
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Table 5: Numbering of nodes and member ordering 

Group 
numbers 

Design 
variables 

Nodal numbers of  
3-node members 

Member 
numbering 

1 X1 
1-6-10,2-7-11 

30-34-36,31-35-38 

1,2 

3,4 

2 X2 

3-6-8,4-7-9 

8-13-17,10-13-15 

11-14-16,9-14-18 

29-34-37,32-35-39 

24-27-29,30-27-22 

25-28-32,31-28-23 

5,6 

7,8 

9,10 

11,12 

13,14 

15,16 

3 X3 

9-10-12,11-12-18 

1-5-4,3-5-2 

30-33-32,29-33-31 

37-40-38,36-40-39 

17,18 

19,20 

21,22 

23,24 

4 X4 
17-20-22,15-20-24 

18-21-23,16-21-25 

25,26 

27,28 

5 X5 
15-19-18,17-19-16 

22-26-25,24-26-23 

29,30 

31,32 

 

 
Figure 8. Element section 
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Table 6: The discrete cross-section set 

)mm(4.0,3.0,2.0I,
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Table 7:  Design data 

Constraint 
data 

Displacement constraints: 

In all direction |∆j| ≤ 2cm (0.79 in) 

Stress constraints: 
Relations  10,11,12,13,14 

Nodal#  10 11 17 18 22 23 24 25 
Loading data 

)kN(PZ−  0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

Material 
properties 

Modulus of elasticity )ksi103(  Mpa1006.2E 45 ××=  

Weight density of the material )
in

lb27.0(
m

N104.7 33
4×=ρ  

Yield stress )ksi08.34(Mpa1035.2f 2
y ×=  

 
In table 8 the results of optimal design are depicted. Figure 9 shows the history of optimization 

for generations. In this example, the number of generation is 50, the population size is chosen as 100, 
the mutation rate is 0.15, and the constant pk for penalty function is taken as 10.  
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Figure 9.  The history of optimization for the 32-uniplete foldable barrel vault 

Generation
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Table 8: Results for the 32-uniplet foldable barrel vault 

Design variables  cm2 Weight N 

(lb) X1 X2 X3 X4 X5 

817.38 

(183.7) 
4.96 2.56 2.64 1.29 0.64 

Sec. # 16 7 9 8 1 

 
Example 3: a 80-uniplet foldable dome optimal design of a 80-uniplet foldable dome, as shown 
in Figure 10 is considered. In Figures 11,12,13, and 14, the geometrical properties are shown. 
Table 9 contains the numbering of nodes and the member ordering. In table 10 the set of cross-
sections are grouped in 16 elements. Table 11 contains all the design data.  
 

 
Figure 10. A 80-uniplet foldable dome 

 

Figure 11. The height of nodes in diagonal view 
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Table 9: Numbering of nodes and member ordering 

Group 
numbers 

Design 
variables Nodal numbers of the 3-node members Member  

numbering 

1 X1 
1-51-27,2-52-26,1-55-31,6-56-26 

1-53-29,4-54-26,1-57-33,8-58-26 

1,2,5,6 

41,42,45,46 

2 X2 

13-107-37,12-108-38,15-113-41,16-114-40 

23-129-40,24-130-48,21-123-45,20-124-46 

11-105-37,12-106-36,25-99-49,24-100-50 

17-115-41,16-116-42,19-121-45,20-122-44 

19,20,23,24 

35,36,39,40 

59,60,63,64 

75,76,79,80 

3 X3 

2-77-35,27-78-10,6-89-43,31-90-18 

3-79-36,11-80-28,5-87-28,17-88-30 

14-109-38,13-110-39,14-111-40,15-112-39 

9-75-50,25-76-34,7-91-44,19-92-32 

22-127-48,23-128-47,22-125-46,21-126-47 

4-83-39,14-84-29,8-95-47,22-96-33 

3-81-38,13-82-28,9-97-48,23-98-34 

10-103-36,11-104-35,10-101-50,25-102-35 

5-84-40,15-86-30,7-93-46,21-94-32 

18-117-42,17-118-43,18-119-44,19-120-43 

3,4,7,8 

11,12,15,16 

17,18,21,22 

27,28,31,32 

33,34,37,38 

43,44,47,48 

51,52,55,56 

57,58,61,62 

67,68,71,72 

73,74,77,78 

4 X4 

4-63-28,29-64-3,3-65-30,5-66-29 
8-73-34,33-74-9,8-71-32,7-72-33 

2-61-28,3-62-27,2-59-34,9-60-27 

6-67-30,5-68-31,6-69-32,7-70-31 

9,10,13,14 

25,26,29,30 

49,50,53,54 

65,66,69,70 
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Figure 12. The dimensions of lower nodes 

 

Figure 13. The dimensions of the middle nodes 
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Figure 14. The dimensions of the upper nodes 

Table 10: The discrete cross-section set 

)mm(3.0,25.0,2.0I,
2.011,I22,I23
I33,I34,I44S cmcmcmcmcmcmcm

cmcmcmcmcmcm

=








××××××
××××××

=  

 

Table 11: Design data 

Constraint 
data 

Displacement constraints: 
In all direction |∆j| ≤ 2cm (0.79 in) 

Stress constraints: 

Relations  10,11,12,13,14 

Nodes 26,…,50 
Loading data 

)(kNPZ  − 0.73 

Material 
properties 

Modulus of elasticity )ksi103(Mpa1006.2E 45 ××=  

Weight density of the material )
in

lb27.0(
m

N104.7 33
4×=ρ  

Yield stress )ksi08.34(Mpa1035.2f 2
y ×=  
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In Table 12 the results of optimal design are depicted. Figure 15 shows the history of 
optimization for generations. In this example, the number of generations is 50, the population 
size is 100, the mutation rate is 0.15, and the constant  kP for penalty function is taken 3.6.  

 

Table 12: Results for the 80-uniplet foldable dome 

Design variables cm2 Weight N 

(lb) X1 X2 X3 X4 

2310.6 

(519.2) 
1.44 3.04 2.25 0.64 

Sec. # 15 3 11 16 
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Figure 15  The history of optimization for the 80-uniplet foldable dome 

  
 

5. CONCLUSIONS 
 

The main emphasis of this paper is on the suitability of the genetic algorithm for the optimal 
design of foldable structures. Since the genetic algorithm does a probabilistic search in all 
discrete spaces and simulates random generations for an optimum point, it can be considered as a 
reasonable tool for optimization.   

The present algorithm, achieves optimal designs with a good convergence. The selection 
method of elitism prevents the omitting of the best individuals. The high rate of mutation was 
considered to prevent local optimum.  

Finally the use of uniplet, simplifies the analysis of foldable structures and hence increases 
the efficiency of  optimization. 

Generation
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